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Abstract: A Nonlinear Proportional-Derivative (NPD) controller with gravity 
compensation is proposed and applied to robot manipulators in this paper. The 
proportional and derivative gains are changed by the nonlinear function of errors 
in the NPD controller. The closed-loop system, composed of nonlinear robot 
dynamics and NPD controllers, is globally asymptotically stable in position control 
of robot manipulators. The comparison of the simulation experiments in the 
position control (the step response) of a robot manipulator with two degrees of 
freedom is also presented to illustrate that the NPD controller is superior to the 
conventional PD controller in a position control system. The experimental results 
show that the NPD controller can obtain a faster response velocity and higher 
position accuracy than the conventional PD controller in the position control of 
robot manipulators because the proportional and derivative gains of the NPD 
controller can be changed by the nonlinear function of errors. The NPD controller 
provides a novel approach for robot control systems.  
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1. Introduction 

Robot dynamics are highly nonlinear because of the coupling between joints. Due 
to the parametric uncertainties in the system dynamics, it is difficult to derive the 
exact description of the system. The position control (also called a regulation 
problem) is one of the most relevant issues in the operation of robot manipulators. 
This is a particular case of the motion control or trajectory control. The primary 
goal of the motion control in the points space is to make the robot joints track a 
given time-varying desired joint position. T a k e g a k i and A r i m o t o [1], 
A r i m o t o and M i y a z a k i [2] showed that simple controllers, such as the 
Proportional-Derivative (PD) controller and Proportional-Integral-Derivative (PID) 
feedback controller are efficient for general control, despite the nonlinearity and 
uncertainty of the robot dynamics. In recent years, various linear PD- or PID-type 
control schemes have been extended to a nonlinear PID control strategy. A PD 
controller with stability robustness in the presence of parametric uncertainty in the 
gravitational torque vector was presented by H s i a [3]. A class of nonlinear PD-
type controllers for robot manipulators was proposed by K e l l y and C a r e l l i [4]. 
S e r a j i [5] presented the analysis and design of a nonlinear PID control with an 
extension to tracking. B u c k l a e w and L i u [6] also proposed a nonlinear gain 
structure for PD-type controllers in robotic applications. Furthermore, R e y e s and 
R o s a d o [7] proposed a polynomial family of PD-type controllers for robot 
manipulators. However, these PID controllers are difficult to determine the 
appropriate PID gains in case of nonlinear and unknown controlled plants, and then 
the PID controller with fixed parameters may usually deteriorate the control 
performance. Therefore, various types of PID control have been developed by 
means of neural networks [8-12]. However, neural networks may be difficult to 
reach the real-time control of robot systems due to quick learning problems on line. 

The strategy of PID control has been one of the most sophisticated and most 
frequently used methods in industry. This is because the PID controller has a simple 
form and strong robustness under broad operating conditions. However, the 
conventional PID controller may usually deteriorate the control performance in 
nonlinear control systems. The nonlinear PID-type controllers have been proved to 
be a promising approach to solve nonlinear control problems and are adapted to the 
control of robot manipulators, because the nonlinear PID controllers have the 
nonlinear characteristics and advantages of PID controllers. Hence, the aim of this 
paper is to propose a Nonlinear Proportional-Derivative (NPD) controller with 
gravity compensation to control robot manipulators, which leads to global 
asymptotic stability of the closed-loop system (dynamics model of a robot 
manipulator plus controllers). This paper is organized as follows. Section 2 
discusses the robot dynamics. In Section 3 a NPD controller with gravity 
compensation is presented based on variable proportional and derivative gains 
corresponding to the error. Section 4 contains the simulation experimental 
comparison between the NPD controller and the conventional PD controller on a 
robot arm with two degrees of freedom. The discussion of the experimental results 
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is given in Section 5. Finally, some conclusions and future work are offered in 
Section 6. 

2. Robot dynamics 

The dynamics of a serial n-link rigid robot can be written as [7]: 
(1)   ( ) ( , ) ( ) ( ) ,τ+ + + =M q q C q q G q F q  

where , ,q q q  are the n×1 vectors of the joint displacement, velocity, and 
acceleration; τ is the n×1 vector of input torques; M(q) is the n×n symmetric 
positive definite manipulator inertia matrix; ( , )C q q  is the n×n matrix of centripetal 
and Coriolis torques; G(q) is the n×1 vector of gravitational torques obtained as the 
gradient of the robot potential energy due to gravity; )(qF  is the n×1 vector for the 
friction torques. The matrix )( qq,C  and the time derivative ( )M q  of the inertia 
matrix satisfy: 

(2)   T 1 ( ) ( , ) 0.
2
⎡ ⎤− =⎢ ⎥⎣ ⎦

q M q C q q q  

3. NPD controllers 

We introduce the design ideas for a NPD controller in the dynamic process of a 
control system, described as follows. 

For the proportional gain kp, when the control error is increased, kp is increased 
under keeping the response velocity without the overshoot; while the control error 
is decreased, kp is decreased to decrease the overshoot and to rapidly reach a stable 
point under an adequate kp. According to the requirements, we select the shape of 
the gain kp with respect to the change of the control error e as shown in Fig. 1.  

 
Fig. 1. Variable curve of the proportional gain kp corresponding to the control error e 

Based on Fig. 1, we present the following nonlinear function: 
(3)  2)( pppp ebaek += ,  

kp 

                 ap  

                   0                                            e 
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where ap and bp are parameters, which can change the kp curve.  
For the derivative gain kd, when the control error is increased, kd is decreased 

to keep the response velocity without the overshoot; while the control error is 
decreased, kd is increased to decrease the overshoot. According to the requirements, 
we select the shape of the gain kd with respect to the change of the control error e, 
as shown in Fig. 2.  

 
Fig. 2. Variable curve of the derivative gain kd corresponding to the error e 

Based on Fig. 2, we present the following nonlinear function: 

(4)   2001.0
)(

e
aek d

d +
= ,  

where ad is a parameter. The denominator takes the smaller value 0.001,when e = 0 
in (4) to overcome the undefined function. 

The NPD controller for n degrees of freedom for the robot arm is presented by 
the following control scheme with gravity compensation: 

(5)  )()()()( qFqGqeKeeKτ ++−= dp ,  

where e ∈ Rn×1 is the position error vector which is defined as e = qd – q, qd ∈ Rn×1 
representing the desired joint position, Kp ∈ Rn×n is the proportional gain which is 
diagonal matrix, and Kd ∈ Rn×n is the derivative gain which is diagonal matrix.  

For the nth joint of the robot arm, the following controller can be obtained 
from (5): 

(6)   
NPD

2
2

( ) ( ) ( ) ( )

( ) ( ) ( ),
0.001

n pn n n dn n n n n

dn
pn pn n n n n n

n
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e

τ = − + + =

= + − + +
+

  

 
where τNPDn is the output torque of the nth NPD controller, which drives the nth 
joint in the robot arm.  
 
 

kd 

 

                    0                                           e 
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4. Simulation example 

In this section, to verify the control efficiency of the proposed NPD controllers for 
the robot arm, the proposed NPD controllers are employed in the position control of 
a two-link robot as shown in Fig. 3. 
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Fig. 3. A two-link robot 

 
In Fig. 2 m1 and m2 are masses of arm 1 and arm 2, respectively; l1 and l2 are 

lengths of arm 1 and arm 2; τ1 and τ2 are driven torques on arm 1 and arm 2; q1 and 
q2 are positions of arm 1 and arm 2. The dynamics model of the two-link robot is 
the same as (1). 

Let 
T T T T

1 2 1 2 1 2 1 2[ , ] , [ , ] , [ , ] , [ , ] ,q q q q q q τ τ= = = =q q q τ  
ci = cos(qi), si =sin(qi), cij = cos(qi+qj), sij = sin(qi+qj), 

then M, V, G in (1) can be described as 
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In this case the parameters of the two-link robot are m1 = 10 kg, m2 = 3 kg and  
l1 = 1.1 m, l2 = 0.8 m.  

To support the theoretical developments, this section presents an experimental 
comparison of the two position controllers on a two-degree-of-freedom direct drive 
robot manipulator, where the servo motors directly drive the joints without gear 
reduction. The advantages of this type of a direct-drive actuator include freedom 

y 

x
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from a backlash and significantly lower joint friction compared to the actuators 
composed by gear drives [7]. To investigate the performance between controllers, 
they are classified as τNPD for NPD controller andτPD for the conventional PD 
controller. The applied torques of the actuators for joints 1 and 2 are chosen so that 
τ1max ≤ 600 N.m and τ2max ≤ 200 N.m, respectively, by practical considerations, 
because it can also produce torque saturation of the actuators. 

An experiment of the position control is designed to compare the performance 
of the controllers in a direct-drive robot. The experiment consists of moving the 
end-effector from its initial position to a desired target (step response). For the 
present application the desired point positions are chosen as: [qd1, qd2]T = [1, 1.5]T 
radians, the initial positions and velocities are set to zero (for example, at home 
position). The friction phenomena and disturbances are not modeled for 
compensation purposes. That is, all the controllers do not show any type of friction 
and disturbance compensations. Therefore, they consider the friction and 
disturbance as unmodelled dynamics. The friction forces of the joints and the 
disturbances are assumed (in N.m) as 

1 1

2 2

3 0.5sign( )
( ) ,

2 0.5sign( )
q q
q q
+⎡ ⎤

= ⎢ ⎥+⎣ ⎦
F q   1
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Simulation experiments are carried out by using the NPD controller and the 
conventional PD controller to select their gains according to the method in [7], such 
that the best time response without an overshoot and a minimal steady-state position 
error are obtained without going into the saturation zone of the actuator’s torques. 
The final values of all simulation parameters are shown in Table 1. 

Table 1. Simulation parameters of the position control for a robot manipulator with two-joints 

Controllers Joint 1 Joint 2 
ap1 bp1 ad1 kp1 kd1 ap2 bp2 ad2 kp2 Kd2 

NPD 90 560 14 / / 20 950 0.6 / / 
PD / / / 460 160 / / / 115 28 

4.1. Simulation experiment of the NPD controllers 

The position control of a two-degree-of-freedom direct drive robot manipulator uses 
the following NPD controllers: 

(7)   )cos(14.140)cos(52.23
001.0

)( 12112
1

1
2
1111NPD qqqq

e
aeeba d

pp +++
+

−+=τ ,  

(8)   )cos(52.23
001.0

)( 2122
2

2
2

2
2222NPD qqq

e
aeeba d

pp ++
+

−+=τ ,  

where τNPD1 and τNPD2 represent the applied torques for the two joints. The 
experimental parameters are shown in Table 1.  

The experimental results of the step response of joint 1 and joint 2 are shown 
in Fig. 4 under NPD control (τNPD1 and τNPD2) without the overshoot. On the other 
hand, the position errors of the NPD controllers (7) and (8), corresponding to two 
joints are depicted in Fig. 5, which demonstrates the convergence properties for 
each controller.  
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Fig. 4. Step response of the NPD control 
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Fig. 5. Position errors of the NPD control 
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4.2. Simulation experiment of the conventional PD controllers 

For the simulation experiment of conventional PD controllers, the desired position 
and initial conditions are the same as in the previous experiment. The PD 
controllers for the robot arm (n = 2) are represented by the following equations: 

(9)   )cos(14.140)cos(52.23 12111111PD qqqqkek dp +++−=τ ,  

(10)   )cos(52.23 2122222PD qqqkek dp ++−=τ ,  

where τPD1 and τPD2 represent the applied torques for joints 1 and 2, respectively. 
The experimental parameters are shown in Table 1. 

The step response for joints 1 and joint 2 is shown in Fig. 6 under PD control 
without the overshoot. Fig. 7 contains the experimental results of the position 
errors. 
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Fig. 6. Step response of the PD control 
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Fig. 7. Position errors of the PD control 

5. Discussion 

Through position control a two-degree-of-freedom direct drive robot manipulator is 
obtained by using the NPD controllers for the two joints. We can see from the 
experimental results of Figs 4 and 5 that the settling times of joint 1 and  joint 2 are 
ts1 = 0.33 s and ts2 = 0.2 s, respectively, when the time required for the system to 
settle 2% of the step input amplitude and the final steady state errors are  
[e1, e2]T = [0.003, 0.001]T radians. The steady-state position errors are presented due 
to the presence of frictions and disturbances at the joints and the lack of friction and 
disturbance compensations in the controllers. It is important to note that despite the 
presence of unmodelled friction and disturbance phenomena, these joint position 
errors are acceptably small. 

Then, through position control a two-degree-of-freedom direct drive robot 
manipulator is carried out by using the conventional PD controllers for the two 
joints. We can see from the experimental results of Figs 6 and 7, that the settling 
times of joint 1 and 2 are ts1 = 0.53 s and ts2 = 0.52 s, respectively, when the time 
required for the system to settle 2% of the step input amplitude and the final steady 
state errors are [e1, e2]T = [0.0054, 0.0035]T radians. 

The above results show that PD controllers are relatively slower in the step 
response and have larger final errors than the NPD controllers. It is worth noticing 
that the response velocity of the proposed NPD controller is very fast. Therefore, 
the proposed NPD controllers can improve the control performance for the position 
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control problem of robot manipulators because the gains of the NPD controller can 
be changed by the nonlinear function of control errors. 

6. Conclusion 

This paper proposed a NPD controller with gravity compensation for robot 
manipulators. The proportional and derivative gains of the NPD controller can vary 
as the error varies. The advantage is that the NPD controller has a faster response 
and smaller position errors compared to the conventional PD controllers in the 
position control of the robot arm. Therefore, the NPD controller is superior to the 
conventional PD controller in the position control system and provides a novel 
approach for robot control systems. In future, our further work will investigate the 
control performance of the NPD controller in various nonlinear control systems. 
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